Vector Subspaces

Contents

1	Vector subspaces	1
2	Examples of subspaces	2
3	Intersection of subspaces	3
4	Sum of subspaces	4

1 Vector subspaces

A subset E of a vector space X is called a **subspace** of X (or a vector subspace of X) if E (with the operations inherited from X) is a vector space. To put it simply, a subspace is a subset of a vector space that is also a vector space.

Theorem 1. A subset E of a vector space X is a subspace of X if and only if the following conditions hold:

- 1. $0 \in E$.
- 2. If $x, y \in E$, then $x + y \in E$.
- 3. If $x \in E$ and $\alpha \in \mathbb{F}$, then $\alpha x \in E$.

In other words, a subspace of a vector space is a subset that contains zero and is closed under the operations of addition and multiplication by numbers.

Proof. (\Rightarrow) If E is a subspace of X, then E is a vector space, and the Conditions 1-3 are satisfied.

 (\Leftarrow) Conversely, suppose that E is a subset of X and that the Conditions 1-3 are satisfied. The Condition 1 insures that the additive identity of Xis in E. The Condition 2 insures that the addition is a mapping from Einto E. The Condition 3 insures that the multiplication by numbers is a

mapping from $\mathbb{F} \times E$ into E. Therefore, the codomain of each vector space operation is the set E and the Axioms of Vector Space V1-V3 and V5-V8 are automatically satisfied. To conclude the proof, we will show that every element of E has an additive inverse in E. In other words, we will verify the Axiom V4. If $x \in E$, then $x \in X$. Thus there exists $-x \in X$ and -x = (-1)x, by the properties of vector space. But $(-1)x \in E$ because of the Condition V3. Therefore $-x \in E$.

2 Examples of subspaces

We now give some examples of subspaces. To prove that the examples are subspaces, we should verify that the Conditions 1-3 from Theorem 1 are satisfied in each case.

Example 1 (Trivial subspaces). Let X be a vector space. The subset X and the subset $\{0\}$ are trivial examples of subspaces of X. The subspace $\{0\}$ is called the **null subspace**.

Example 2 (Space $\mathbb{F}_n[z]$ of polynomials). We denote by $\mathbb{F}_n[z]$ the set of all polynomials in z with coefficients in \mathbb{F} and degree less than or equal to n. The set $\mathbb{F}_n[z]$ is a subspace of $\mathbb{F}[z]$.

Example 3 (Line through the origin). Let X be a vector space and let $v \in X$ with $v \neq 0$. The set $E = \{\alpha v \in X \mid \alpha \in \mathbb{F}\}$ is a subspace of X, called the line through the origin in the direction of v.

Example 4 (xy-plane in the real 3-space). The set

$$E = \{ (x, y, z) \in \mathbb{R}^3 \mid z = 0 \}$$

is a subspace of \mathbb{R}^3 . Geometrically, we may think of E as the horizontal plane in \mathbb{R}^3 that crosses the origin.

Example 5 (Hyperplane of \mathbb{F}^n through the origin—or the set of solutions to a homogeneous linear equation). A homogeneous linear equation in the variables x_1, \ldots, x_n is an equation of the form

$$a_1x_1 + \dots + a_nx_n = 0$$

where $a_1, \ldots, a_n \in \mathbb{F}$. A solution to this equation is an *n*-tuple of numbers $(s_1, \ldots, s_n) \in \mathbb{F}^n$ such that

$$a_1s_1 + \dots + a_ns_n = 0.$$

Let E be the set of all the solutions to the above equation:

$$E = \{ (x_1, \dots, x_n) \in \mathbb{F}^n \mid a_1 x_1 + \dots + a_n x_n = 0 \}.$$

The set E is a subspace of \mathbb{F}^n . In the trivial case where $a_j = 0$ for all $j = 1, \ldots, n$, we have $E = \mathbb{F}^n$. If $a_j \neq 0$ for some $j \in \{1, \ldots, n\}$, then E is called a hyperplane of \mathbb{F}^n through the origin.

Example 6 (Space $\mathbb{F}_c^{\mathbb{N}}$ of sequences). Let $\mathbb{F}_c^{\mathbb{N}}$ be the set of all sequences of numbers in \mathbb{F} that have only a finite number of nonzero terms:

$$\mathbb{F}_c^{\mathbb{N}} = \{ (x_j)_{j=1}^{\infty} \in \mathbb{F}^{\mathbb{N}} \mid x_j = 0 \text{ for all } j > N \text{ for some } N \in \mathbb{N} \}.$$

The set $\mathbb{F}_c^{\mathbb{N}}$ is a subspace of $\mathbb{F}^{\mathbb{N}}$.

Example 7 (Space $\mathcal{P}([a, b], \mathbb{F})$ of functions). A function $p : [a, b] \to \mathbb{F}$ is called a polynomial function if there exist $n \in \mathbb{N}$ and $a_0, \ldots, a_n \in \mathbb{F}$ such that

$$p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

for all $z \in [a, b]$. We denote by $\mathcal{P}([a, b], \mathbb{F})$ the set of all polynomial functions from [a, b] to \mathbb{F} :

$$\mathcal{P}([a,b],\mathbb{F}) = \{ f \in \mathbb{F}^{[a,b]} \mid f \text{ is polynomial} \}.$$

Clearly 0 is a polynomial function, and if f and g are polynomial, then f + g and αf are polynomials. Thus $\mathcal{P}([a, b], \mathbb{F})$ is a subspace of $\mathbb{F}^{[a, b]}$.

Example 8 (Space $\mathcal{C}([a, b], \mathbb{F})$ of functions). Let $\mathcal{C}([a, b], \mathbb{F})$ be the set of all continuous functions from [a, b] to \mathbb{F} :

$$\mathcal{C}([a,b],\mathbb{F}) = \{ f \in \mathbb{F}^{[a,b]} \mid f \text{ is continuous} \}.$$

Clearly 0 is a continuous function, and if f and g are continuous functions, then f + g and αf are continuous, by a theorem of calculus. Thus $\mathcal{C}([a, b], \mathbb{F})$ is a subspace of $\mathbb{F}^{[a,b]}$. In fact, we have the following hierarchy of subspaces, one contained into the other:

$$\mathcal{P}([a,b],\mathbb{F}) \subset \mathcal{C}([a,b],\mathbb{F}) \subset \mathbb{F}^{[a,b]}.$$

Example 9. Let *E* be the set of all functions in $\mathbb{R}^{\mathbb{R}}$ that are solutions of the differential equation

$$u'' + u = 0.$$

The set E is a subspace of $\mathbb{R}^{\mathbb{R}}$.

3 Intersection of subspaces

The next theorem describes the behaviour of subspaces with respect to intersections.

Theorem 2 (The intersection of subspaces is a subspace). Let X be a vector space. The intersection of any family of subspaces of X is a subspace of X.

Proof. Let \mathcal{E} be a family of subspaces of X and let $Y = \bigcap_{E \in \mathcal{E}} E$. Recall that $Y = \{x \mid x \in E \text{ for all } E \in \mathcal{E}\}$. Since each $E \in \mathcal{E}$ is a subspace of X, we have $0 \in E$ for all $E \in \mathcal{E}$. Thus $0 \in Y$. Let $x, y \in Y$ and let $\alpha \in \mathbb{F}$. By the definition of Y, we have $x, y \in E$ for all $E \in \mathcal{E}$. Since each $E \in \mathcal{E}$ is a subspace of X, we have $x + y \in E$ and $\alpha x \in E$ for all $E \in \mathcal{E}$. Therefore $x + y \in Y$ and $\alpha x \in Y$. Thus Y is a subspace of X, by Theorem 1.

Example 10 (Intersection of hyperplanes of \mathbb{F}^n through the origin—or the set of solutions to a system of homogeneous linear equations). A system of homogeneous linear equations in the variables $x_1, \ldots, x_n \in \mathbb{F}$ is a system of equations of the form

$$a_{11}x_{1} + \dots + a_{1n}x_{n} = 0$$

$$a_{21}x_{1} + \dots + a_{2n}x_{n} = 0$$

$$\vdots$$

$$a_{m1}x_{1} + \dots + a_{mn}x_{n} = 0$$
(1)

where $a_{ij} \in \mathbb{F}$ for $i = 1, \ldots, m$ and $j = 1, \ldots, n$. A solution to this system is an *n*-tuple of numbers $(s_1, \ldots, s_n) \in \mathbb{F}^n$ that is a solution to each equation in (1). Let *E* be the set of all the solutions to (1). It follows that *E* is a subspace of \mathbb{F}^n . In fact, $E = E_1 \cap \cdots \cap E_m$, where E_i , for $i = 1, \ldots, m$, is the set of solutions to the equation $a_{i1}x_1 + \cdots + a_{in}x_n = 0$, as in the Example 5. Thus each E_i is a subspace of \mathbb{F}^n . Hence *E* is an intersection of subspaces of \mathbb{F}^n . Therefore *E* is a subspace of \mathbb{F}^n , by Theorem 2.

4 Sum of subspaces

When working with vector spaces, we are usually interested in subspaces as apposed to arbitrary sets. In general, the union of subspaces is not a subspace. However, the sum of subspaces, which we describe next, is a subspace.

Let X be a vector space over \mathbb{F} and let E_1, \ldots, E_k be subsets of X. The **sum** of E_1, \ldots, E_k , denoted $E_1 + \cdots + E_k$, is the set of all possible sums of elements of E_1, \ldots, E_k :

$$E_1 + \dots + E_k = \{x_1 + \dots + x_k \in X \mid x_1 \in E_1, \dots, x_k \in E_k\}.$$

Example 11. Suppose that

$$E_1 = \{(x, 0, 0) \in \mathbb{R}^3 \mid x \in \mathbb{R}\}$$
 and $E_2 = \{(0, y, 0) \in \mathbb{R}^3 \mid y \in \mathbb{R}\}.$

Then

$$E_1 + E_2 = \{(x, y, 0) \in \mathbb{R}^3 \mid x, y \in \mathbb{F}\}.$$

Gustavo de Oliveira

February 9, 2019

Example 12. Suppose that

$$E_{1} = \{ (w, w, y, y) \in \mathbb{R}^{4} \mid w, y \in \mathbb{R} \},\$$

$$E_{2} = \{ (w, w, w, z) \in \mathbb{R}^{3} \mid w, z \in \mathbb{R} \}.$$

Then

$$E_2 + E_2 = \{ (w, w, y, z) \in \mathbb{R}^3 \mid w, x, y \in \mathbb{F} \}.$$

Theorem 3. Suppose that E_1, \ldots, E_k are subspaces of X. Then $E_1 + \cdots + E_k$ is a subspace of X. In fact, the sum $E_1 + \cdots + E_k$ is the smallest subspace of X containing E_1, \ldots, E_k .

Proof. It is evident that $E_1 + \cdots + E_k$ contains the vector zero and is closed under the operations of addition and scalar multiplication. Thus $E_1 + \cdots + E_k$ is a subspace of X, by Theorem 1.

Since $E_1 + \cdots + E_k$ contains the vector $0 + 0 + \cdots + 0 + x_j + 0 + \cdots + 0$ for all $x_j \in E_j$, the subspace $E_1 + \cdots + E_k$ contains each E_1, \ldots, E_k . On the other hand, every subspace containing E_1, \ldots, E_k also contains $E_1 + \cdots + E_k$ because every subspace contains all finite sum of their elements. Therefore, for $j = 1, \ldots, k$, we have $E_j \subset E_1 + \cdots + E_k \subset S$ for every subspace Scontaining E_1, \ldots, E_k . Thus the sum $E_1 + \cdots + E_k$ is the smallest subspace of X containing E_1, \ldots, E_k .

Suppose that E_1, \ldots, E_k are subspaces of X. Every element of the sum $E_1 + \cdots + E_k$ can be represented as

$$x_1 + \cdots + x_k$$

where $x_j \in E_j$ for j = 1, ..., k. If this representation is unique, we say that the sum $E_1 + \cdots + E_k$ is a **direct sum** and we denote it by $E_1 \oplus \cdots \oplus E_k$.

Example 13. Suppose that

$$E_1 = \{(x, y, 0) \in \mathbb{R}^3 \mid x, y \in \mathbb{R}\} \text{ and } E_2 = \{(0, 0, z) \in \mathbb{R}^3 \mid z \in \mathbb{R}\}.$$

The sum $E_1 + E_2$ is a direct sum and is given by

$$E_1 \oplus E_2 = \{ (x, y, z) \in \mathbb{R}^3 \mid x, y \in \mathbb{F} \} = \mathbb{R}^3.$$

Example 14. For $j = 1, \ldots, n$, suppose that

$$E_{i} = \{(0, \dots, 0, x, 0, \dots, 0) \in \mathbb{F}^{n} \mid x \in \mathbb{R}\},\$$

where the *j*th coordinate of $(0, \ldots, 0, x, 0, \ldots, 0)$ is equal to x. Then

$$E_1 \oplus \cdots \oplus E_n = \mathbb{F}^n.$$

Gustavo de Oliveira

February 9, 2019

Example 15. Consider

$$E_{1} = \{ (x, y, 0) \in \mathbb{F}^{3} \mid x, y \in \mathbb{F} \},\$$

$$E_{2} = \{ (0, 0, z) \in \mathbb{F}^{3} \mid z \in \mathbb{F} \},\$$

$$E_{3} = \{ (0, y, y) \in \mathbb{F}^{3} \mid y \in \mathbb{F} \}.$$

Then

$$E_1 + E_2 + E_3 = \mathbb{F}^3$$

because every vector (x, y, x) in \mathbb{F}^3 can be written as

$$(x, y, z) = (x, y, 0) + (0, 0, z) + (0, 0, 0).$$

However, the sum $E_1 + E_2 + E_3$ is not a direct sum because vectors in it can be represented in different ways as a sum of vectors in E_1 , E_2 and E_3 . For example,

$$(1, 1, 1) = (1, 1, 0) + (0, 0, 1) + (0, 0, 0)$$

and

$$(1,1,1) = (1,0,0) + (0,0,0) + (0,1,1).$$

To decide whether a sum of subspaces is a direct sum, we need only to consider whether the vector zero can be uniquely written as a sum:

Theorem 4 (Condition for a direct sum). Suppose E_1, \ldots, E_k are subspaces of X. Then $E_1 + \cdots + E_k$ is a direct sum if and only if the only way to write zero as a sum is $0 = 0 + \cdots + 0$.

Proof. (\Rightarrow) Suppose $E_1 + \cdots + E_k$ is a direct sum. The vector zero can be written as $0 = 0 + \cdots + 0$. But since $E_1 + \cdots + E_k$ is a direct sum, this is the only way to express the vector zero, by definition.

(\Leftarrow) Suppose that the only way to write zero is $0 = 0 + \dots + 0$. Let $x \in E_1 + \dots + E_k$. Then $x = x_1 + \dots + x_k$ with $x_j \in E_j$ for $j = 1, \dots, k$. Suppose that $x = y_1 + \dots + y_k$ with $y_j \in E_j$ for $j = 1, \dots, k$. Then $0 = (x_1 - y_1) + \dots + (x_k - y_k)$ with $(x_j - y_j) \in E_j$ for $j = 1, \dots, k$. Hence $x_j - y_j = 0$ for each j, that is, $x_j = y_j$. Thus the representation of x as a sum is unique. Therefore the sum is a direct sum.

The next theorem gives a simple criteria for verifying whether a pair of subspaces form a direct sum:

Theorem 5 (Direct sum of two subspaces). Suppose that E_1 and E_2 are subspaces of X. Then $E_1 + E_2$ is a direct sum if and only if $E_1 \cap E_2 = \{0\}$.

Proof. (\Rightarrow) Suppose that $E_1 + E_2$ is a direct sum. If $x \in E_1 \cap E_2$, we can write 0 = x + (-x) with $x \in E_1$ and $-x \in E_2$. By the unique representation of zero as a sum, it follows that x = 0. Thus $E_1 \cap E_2 = \{0\}$.

(\Leftarrow) Conversely, suppose that $E_1 \cap E_2 = \{0\}$ and $0 = x_1 + x_2$ with $x_1 \in E_1$ and $x_2 \in E_2$. This equality implies $x_1 = -x_2$. Hence $x_1 \in E_2$ because $-x_2 \in E_2$. Thus $x_1 \in E_1 \cap E_2$. Therefore $x_1 = 0$ and $x_2 = -x_1 = 0$. Thus the only way to write zero as a sum is 0 = 0 + 0. Therefore $E_1 + E_2$ is a direct sum, by Theorem 4.

The last theorem considers only the case of two subspaces. When asking whether the sum of more than two subspaces is a direct sum, it is not enough to verify that each pair of subspaces intersect only at zero. For instance, in Example 15, we have $E_1 \cap E_2 = \{0\}$, $E_2 \cap E_3 = \{0\}$ and $E_3 \cap E_1 = \{0\}$. However, the sum $E_1 + E_2 + E_2$ is not a direct sum.

Sums of subspaces are analogous to unions of subsets, and direct sums are analogous to unions of disjoint subsets.