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1 Vector subspaces

A subset E of a vector space X is called a subspace of X (or a vector
subspace of X) if E (with the operations inherited from X) is a vector space.
To put it simply, a subspace is a subset of a vector space that is also a vector
space.

Theorem 1. A subset E of a vector space X is a subspace of X if and only
if the following conditions hold:

1. 0 ∈ E.

2. If x, y ∈ E, then x+ y ∈ E.

3. If x ∈ E and α ∈ F, then αx ∈ E.

In other words, a subspace of a vector space is a subset that contains
zero and is closed under the operations of addition and multiplication
by numbers.

Proof. (⇒) If E is a subspace of X, then E is a vector space, and the
Conditions 1-3 are satisfied.

(⇐) Conversely, suppose that E is a subset of X and that the Conditions
1-3 are satisfied. The Condition 1 insures that the additive identity of X
is in E. The Condition 2 insures that the addition is a mapping from E
into E. The Condition 3 insures that the multiplication by numbers is a
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mapping from F× E into E. Therefore, the codomain of each vector space
operation is the set E and the Axioms of Vector Space V1-V3 and V5-V8
are automatically satisfied. To conclude the proof, we will show that every
element of E has an additive inverse in E. In other words, we will verify
the Axiom V4. If x ∈ E, then x ∈ X. Thus there exists −x ∈ X and
−x = (−1)x, by the properties of vector space. But (−1)x ∈ E because of
the Condition V3. Therefore −x ∈ E.

2 Examples of subspaces

We now give some examples of subspaces. To prove that the examples
are subspaces, we should verify that the Conditions 1-3 from Theorem 1 are
satisfied in each case.

Example 1 (Trivial subspaces). Let X be a vector space. The subset X
and the subset {0} are trivial examples of subspaces of X. The subspace
{0} is called the null subspace.

Example 2 (Space Fn[z] of polynomials). We denote by Fn[z] the set of all
polynomials in z with coefficients in F and degree less than or equal to n.
The set Fn[z] is a subspace of F[z].

Example 3 (Line through the origin). Let X be a vector space and let
v ∈ X with v 6= 0. The set E = {αv ∈ X | α ∈ F} is a subspace of X, called
the line through the origin in the direction of v.

Example 4 (xy-plane in the real 3-space). The set

E = {(x, y, z) ∈ R3 | z = 0}

is a subspace of R3. Geometrically, we may think of E as the horizontal
plane in R3 that crosses the origin.

Example 5 (Hyperplane of Fn through the origin—or the set of solutions
to a homogeneous linear equation). A homogeneous linear equation in the
variables x1, . . . , xn is an equation of the form

a1x1 + · · ·+ anxn = 0

where a1, . . . , an ∈ F. A solution to this equation is an n-tuple of numbers
(s1, . . . , sn) ∈ Fn such that

a1s1 + · · ·+ ansn = 0.

Let E be the set of all the solutions to the above equation:

E = {(x1, . . . , xn) ∈ Fn | a1x1 + · · ·+ anxn = 0}.

The set E is a subspace of Fn. In the trivial case where aj = 0 for all
j = 1, . . . , n, we have E = Fn. If aj 6= 0 for some j ∈ {1, . . . , n}, then E is
called a hyperplane of Fn through the origin.
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Example 6 (Space FN
c of sequences). Let FN

c be the set of all sequences of
numbers in F that have only a finite number of nonzero terms:

FN
c = {(xj)∞j=1 ∈ FN | xj = 0 for all j > N for some N ∈ N}.

The set FN
c is a subspace of FN.

Example 7 (Space P([a, b],F) of functions). A function p : [a, b] → F is
called a polynomial function if there exist n ∈ N and a0, . . . , an ∈ F such
that

p(z) = a0 + a1z + a2z
2 + · · ·+ anz

n

for all z ∈ [a, b]. We denote by P([a, b],F) the set of all polynomial functions
from [a, b] to F:

P([a, b],F) = {f ∈ F[a,b] | f is polynomial}.

Clearly 0 is a polynomial function, and if f and g are polynomial, then f+g
and αf are polynomials. Thus P([a, b],F) is a subspace of F[a,b].

Example 8 (Space C([a, b],F) of functions). Let C([a, b],F) be the set of all
continuous functions from [a, b] to F:

C([a, b],F) = {f ∈ F[a,b] | f is continuous}.

Clearly 0 is a continuous function, and if f and g are continuous functions,
then f+g and αf are continuous, by a theorem of calculus. Thus C([a, b],F)
is a subspace of F[a,b]. In fact, we have the following hierarchy of subspaces,
one contained into the other:

P([a, b],F) ⊂ C([a, b],F) ⊂ F[a,b].

Example 9. Let E be the set of all functions in RR that are solutions of
the differential equation

u′′ + u = 0.

The set E is a subspace of RR.

3 Intersection of subspaces

The next theorem describes the behaviour of subspaces with respect to
intersections.

Theorem 2 (The intersection of subspaces is a subspace). Let X be a vector
space. The intersection of any family of subspaces of X is a subspace of X.
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Proof. Let E be a family of subspaces of X and let Y =
⋂

E∈E E. Recall
that Y = {x | x ∈ E for all E ∈ E}. Since each E ∈ E is a subspace of X,
we have 0 ∈ E for all E ∈ E . Thus 0 ∈ Y . Let x, y ∈ Y and let α ∈ F. By
the definition of Y , we have x, y ∈ E for all E ∈ E . Since each E ∈ E is a
subspace of X, we have x + y ∈ E and αx ∈ E for all E ∈ E . Therefore
x+ y ∈ Y and αx ∈ Y . Thus Y is a subspace of X, by Theorem 1.

Example 10 (Intersection of hyperplanes of Fn through the origin—or the
set of solutions to a system of homogeneous linear equations). A system of
homogeneous linear equations in the variables x1, . . . , xn ∈ F is a system of
equations of the form

a11x1 + · · ·+ a1nxn = 0

a21x1 + · · ·+ a2nxn = 0

...
...

am1x1 + · · ·+ amnxn = 0

(1)

where aij ∈ F for i = 1, . . . ,m and j = 1, . . . , n. A solution to this system is
an n-tuple of numbers (s1, . . . , sn) ∈ Fn that is a solution to each equation
in (1). Let E be the set of all the solutions to (1). It follows that E is a
subspace of Fn. In fact, E = E1∩· · ·∩Em, where Ei, for i = 1, . . . ,m, is the
set of solutions to the equation ai1x1 + · · ·+ainxn = 0, as in the Example 5.
Thus each Ei is a subspace of Fn. Hence E is an intersection of subspaces
of Fn. Therefore E is a subspace of Fn, by Theorem 2.

4 Sum of subspaces

When working with vector spaces, we are usually interested in subspaces
as apposed to arbitrary sets. In general, the union of subspaces is not a
subspace. However, the sum of subspaces, which we describe next, is a
subspace.

Let X be a vector space over F and let E1, . . . , Ek be subsets of X. The
sum of E1, . . . , Ek, denoted E1 + · · ·+Ek, is the set of all possible sums of
elements of E1, . . . , Ek:

E1 + · · ·+ Ek = {x1 + · · ·+ xk ∈ X | x1 ∈ E1, . . . , xk ∈ Ek}.

Example 11. Suppose that

E1 = {(x, 0, 0) ∈ R3 | x ∈ R} and E2 = {(0, y, 0) ∈ R3 | y ∈ R}.

Then
E1 + E2 = {(x, y, 0) ∈ R3 | x, y ∈ F}.
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Example 12. Suppose that

E1 = {(w,w, y, y) ∈ R4 | w, y ∈ R},
E2 = {(w,w,w, z) ∈ R3 | w, z ∈ R}.

Then
E2 + E2 = {(w,w, y, z) ∈ R3 | w, x, y ∈ F}.

Theorem 3. Suppose that E1, . . . , Ek are subspaces of X. Then E1+· · ·+Ek

is a subspace of X. In fact, the sum E1 + · · ·+ Ek is the smallest subspace
of X containing E1, . . . , Ek.

Proof. It is evident that E1 + · · ·+Ek contains the vector zero and is closed
under the operations of addition and scalar multiplication. Thus E1+· · ·+Ek

is a subspace of X, by Theorem 1.
Since E1 + · · ·+Ek contains the vector 0 + 0 + · · ·+ 0 + xj + 0 + · · ·+ 0

for all xj ∈ Ej , the subspace E1 + · · ·+Ek contains each E1, . . . , Ek. On the
other hand, every subspace containing E1, . . . , Ek also contains E1+ · · ·+Ek

because every subspace contains all finite sum of their elements. Therefore,
for j = 1, . . . , k, we have Ej ⊂ E1 + · · · + Ek ⊂ S for every subspace S
containing E1, . . . , Ek. Thus the sum E1 + · · ·+Ek is the smallest subspace
of X containing E1, . . . , Ek.

Suppose that E1, . . . , Ek are subspaces of X. Every element of the sum
E1 + · · ·+ Ek can be represented as

x1 + · · ·+ xk

where xj ∈ Ej for j = 1, . . . , k. If this representation is unique, we say that
the sum E1 + · · ·+Ek is a direct sum and we denote it by E1 ⊕ · · · ⊕Ek.

Example 13. Suppose that

E1 = {(x, y, 0) ∈ R3 | x, y ∈ R} and E2 = {(0, 0, z) ∈ R3 | z ∈ R}.

The sum E1 + E2 is a direct sum and is given by

E1 ⊕ E2 = {(x, y, z) ∈ R3 | x, y ∈ F} = R3.

Example 14. For j = 1, . . . , n, suppose that

Ej = {(0, . . . , 0, x, 0, . . . , 0) ∈ Fn | x ∈ R},

where the jth coordinate of (0, . . . , 0, x, 0, . . . , 0) is equal to x. Then

E1 ⊕ · · · ⊕ En = Fn.
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Example 15. Consider

E1 = {(x, y, 0) ∈ F3 | x, y ∈ F},
E2 = {(0, 0, z) ∈ F3 | z ∈ F},
E3 = {(0, y, y) ∈ F3 | y ∈ F}.

Then
E1 + E2 + E3 = F3

because every vector (x, y, x) in F3 can be written as

(x, y, z) = (x, y, 0) + (0, 0, z) + (0, 0, 0).

However, the sum E1 + E2 + E3 is not a direct sum because vectors in it
can be represented in different ways as a sum of vectors in E1, E2 and E3.
For example,

(1, 1, 1) = (1, 1, 0) + (0, 0, 1) + (0, 0, 0)

and
(1, 1, 1) = (1, 0, 0) + (0, 0, 0) + (0, 1, 1).

To decide whether a sum of subspaces is a direct sum, we need only to
consider whether the vector zero can be uniquely written as a sum:

Theorem 4 (Condition for a direct sum). Suppose E1, . . . , Ek are subspaces
of X. Then E1 + · · ·+Ek is a direct sum if and only if the only way to write
zero as a sum is 0 = 0 + · · ·+ 0.

Proof. (⇒) Suppose E1 + · · ·+ Ek is a direct sum. The vector zero can be
written as 0 = 0 + · · · + 0. But since E1 + · · · + Ek is a direct sum, this is
the only way to express the vector zero, by definition.

(⇐) Suppose that the only way to write zero is 0 = 0 + · · · + 0. Let
x ∈ E1 + · · · + Ek. Then x = x1 + · · · + xk with xj ∈ Ej for j = 1, . . . , k.
Suppose that x = y1 + · · · + yk with yj ∈ Ej for j = 1, . . . , k. Then
0 = (x1 − y1) + · · ·+ (xk − yk) with (xj − yj) ∈ Ej for j = 1, . . . , k. Hence
xj − yj = 0 for each j, that is, xj = yj . Thus the representation of x as a
sum is unique. Therefore the sum is a direct sum.

The next theorem gives a simple criteria for verifying whether a pair of
subspaces form a direct sum:

Theorem 5 (Direct sum of two subspaces). Suppose that E1 and E2 are
subspaces of X. Then E1 +E2 is a direct sum if and only if E1 ∩E2 = {0}.

Proof. (⇒) Suppose that E1 + E2 is a direct sum. If x ∈ E1 ∩ E2, we can
write 0 = x+ (−x) with x ∈ E1 and −x ∈ E2. By the unique representation
of zero as a sum, it follows that x = 0. Thus E1 ∩ E2 = {0}.
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(⇐) Conversely, suppose that E1 ∩ E2 = {0} and 0 = x1 + x2 with
x1 ∈ E1 and x2 ∈ E2. This equality implies x1 = −x2. Hence x1 ∈ E2

because −x2 ∈ E2. Thus x1 ∈ E1∩E2. Therefore x1 = 0 and x2 = −x1 = 0.
Thus the only way to write zero as a sum is 0 = 0 + 0. Therefore E1 + E2

is a direct sum, by Theorem 4.

The last theorem considers only the case of two subspaces. When asking
whether the sum of more than two subspaces is a direct sum, it is not enough
to verify that each pair of subspaces intersect only at zero. For instance, in
Example 15, we have E1 ∩ E2 = {0}, E2 ∩ E3 = {0} and E3 ∩ E1 = {0}.
However, the sum E1 + E2 + E2 is not a direct sum.

Sums of subspaces are analogous to unions of subsets, and direct
sums are analogous to unions of disjoint subsets.
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