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Introduction: An example from classical physics

Kinetic theory of a gas of N particles

» Microscopic theory. Newtons's equations for the trajectories
(x1,%2,...,xn) of N particles:

Xj=Vj

N
== VV(5—x).
i#j

Here x; = xj(t) and V is a short range potential.



Introduction: An example from classical physics

Kinetic theory of gas of N particles

» Macroscopic theory. Boltzmann's equation for the density of
particles f = f(x, v, t) at time t:

8tf+v-VXf:/ dv' [ dwB(v—V, w)
R3 S?

X [F (X, Vout, £)F (X, Voer t) — F(x, v, t)f(x,V/, t)].

Incoming particles with v and v’ collide. Outcoming with

Vour =V +w- (V= v)w,

L=V —w- (V = V).

Here B(v — v/,w) is proportional do the cross section.



Introduction: An example from classical physics

Kinetic theory of gas of N particles

» Scaling limit. Boltzmann's equation becomes correct in the
Boltzmann-Grad limit:

density p — 0, N — o0, Np? = const.

» Mathematical derivation. Lanford ('75) proved: In the
Boltzmann-Grad limit, Boltzmann's equation follows from
Newton's equation (at least for short times).

> Extensions. Later, to a larger class of potentials V.



As the above example illustrates

Typical steps in a derivation program

» Microscopic theory. Physical law; Many degrees of freedom;
Arbitrary initial data; Detailed solutions: impractical or not
very useful.

» Scaling limit. Appropriate regime of parameters.

» Macroscopic theory. Statistical description; Effective theory
(or equation); Restricted initial data (possibly).

> Mathematical results. Detailed analysis of the problem.

> Extensions. Less regular interactions; More general initial
data.



An example from quantum theory

» Thomas-Fermi theory for large atoms and molecules.
Neutral quantum system of N electrons and M nuclei.
Ground state energy:

E(N) = inf (1), Hvi).
For large N:
E(N) ~ Ere(N) = inf {€rr(p) | [ dx|p(x)] = N},

where E7r(p) is the Thomas-Fermi functional.

Theorem (Lieb-Simon ’77). Approximation becomes exact
as N — oo.



Main background reference for this talk

N. Benedikter, M. Porta and B. Schlein (2016).

SPRINGER BRIEFS IN MATHEMATICAL PHYSICS 7

Niels Benedikter

n]amm Scf m
Effective
Evolution
Equations

from Quantum
Dynamics

&) Springer

The references for the work that we mention can be found there.



Plan

1. Introduction (completed)
2. One-component Bose gases (easier to explain)

3. Two-component Bose gases (similar)



Wave function for N Bosonic particles

» N-particle wave function:
Ye(x1,...,xn) € C, x1,...,xy € R3, teR.
» Square-integrable and normalized:

Y e PR ~ 2R ® - @ L2(R3),

[l =1.
R3N

» |4;|? probability density.

P 1); is symmetric in each pair of variables xi, ..., xy.



Density operator

N-particle

Yo = [Ve)(tbe] on  LA(RN).
Tryy, = 1, Vgl = Tr [yl

1-particle

VQ(plt) =Tro,n Yy, on L2(]R3).

Tro_.n Integrate out N — 1 variables of the integral

kernel of ~y,.

(1)
'th
wave-function.

1-particle marginal: Plays the role of 1-particle



Bose-Einstein condensation

In experiments, since 1995 (Nobel Prize 2001)

Trapped cold (T ~ 107°K) dilute gas of N ~ 103 Bosons.
Heuristically
N
Ye(x1, .y xN) H ¢(x;) where ¢, € L*(R?).
j=1
~ [pe)(pe| @ - @ |ipe) (e -
Mathematically

Tr [48) — loe) el | = 0.



Models

Quantum Hamiltonian in the mean-field regime
. N 1N
Hy™ =0 (= By + Vi () + 1 22 V(% = %),

j:l i<j
Quantum Hamiltonian in the Gross-Pitaevskii regime

N

ra 1 S
HN =D (= Do+ Virap () + 1 D N V(N(xi = x5),
Jy i<j

Virap(y) = [y[* and V>0, V(x) = V(|x]), compact supp.



Basic problems

Ground state energy
E(N) = inf (3, Hy*Pep) = inf spec Hy™P.
Initial value problem
Hy = (Hy™ with Viap = 0)

i0hr = Hynpy
=0 = .



In the mean-field regime

Expect:

> Approximate factorization of condensate 1; for large N
=

» Approximate independence of particles
= (by the Law of Large Numbers)

Potential experienced by the jth particle

LS Vi) = [ ay Vi - i)
= (V) ()-

= (separation of variables)

» The Schrddinger equation should factor into products

iOrpr = —Dpe + V % |01 20r.



In the Gross-Pitaevskii regime

Very heuristically

1 1
NN3V(N-) ~0()  forlarge N

models rare but strong collisions.
In this talk, we focus on mean-field.

We may skip the slides about Gross-Pitaevskii.



Time-independent theory

Mean-field regime
Ground state energy per particle:

1

lim — inf spec Hy™® = min{Emr(p) | ¢ € L2(R3), |lp| = 1}

N—oco N
where

2 2, 1 2\) 12
Eue(9) = [ (19 + Virapliol® + 5(V x6D)lg?).
The minimizer ppr of Epp obeys
Tr"yfblg)s — lome) (emF| ’ —0 as N — oo

(Modern proof: Lewin-Nam-Rougerie ('14))



Time-independent theory

Gross-Pitaevski regime
Ground state energy per particle:

1
lim — inf spec Hy™® = min{&Ecp() | p € L2(R?), |l¢|| = 1}
N—oco N

where
Eap(p) = / (I + Viaplgl? + 4all*).

The minimizer pgp of Egp obeys
Tr‘ 'Yf/,lg)s — |pep){¢arl ’ —0 as N — oo.

(Lieb-Seiringer-Yngvason ('00))



Fock space

F=Ca@L3,(R>).

n>1

State ¢ € F:
V=th 1 D2D - BYND -
Vacuum state Q € F:
Q=10000d---
N number of particles operator on F:
(NY)n = nip.
For example (Q,NQ) = 0.



Time evolution of condensates — Initial data

Product state in L2, (R3V)

sym

Coherent state in F
Vi = W(\FN@)Q
®2 ®3
— o NllelP/2 |4 LA
=e DD 8P S, 8P
VTRV T

We have
<Wt:o,NWt:0> - N



Schrodinger equation on Fock space

Condensate state reached — Traps are turned off
Hy = (Hy™ with Vipap = 0).

Hamiltonian on Fock space
H=Hy O H ®  OHyD---

Time evolution is observed

{iatwt = HY: as N —

Vig=V



Mean-field regime

Theorem (Rodnianski-Schlein, CMP '09)
Consider the solution

V= e MEW(VNY)Q.

Let
rﬁl) = one-particle reduced density operator of V.
Then
(1) 1
Tr| T — lee) (pel | < Cexp(Clt) 5
for all t and N, where @, solves (time-dep. Hartree eqn.)

i0vpr = —Dpe + (V x e )pe - with o = .



Gross-Pitaevskii regime

Theorem (Benedikter—de Oliveira—Schlein, CPAM '14)]
Consider the solution

W, = e W (VN) T (k)Q.

Let
r?) = one-particle reduced density operator of V.

Then
Tr | T = [pe) (el | < Cexp(Cexp(Clt]))

3~

for all t and N, where ¢, solves (time-dep. Gross-Pitaevskii eqn.)
i0ppr = — Dy + 8malo: ot with w0 = ¥,

a > 0 (scattering length of V).



Two-component condensate

State space
L2(R3Nl) ® L2(R3N2).

Hamiltonian (in the mean-field regime)

HNl,Nz = th 1+ 1® th + VNl,Nz

where
NP
th - Z Z V - XJ
j=1 I<_]
and

N1 N
1 1 2

— Vi
Vg N, = ,V1+N221k21 12(xj

— Yk)-



Two-component condensate

(1,1)-particle density operator
A = Ty, 1l (] on L2(RY) @ L2(RD).
We embed our model into
F®F.

Hamiltonian
H=Hi+H+V.

Initial data

Vo= W( Nlu)Q® W( N2V)Q.



Two-component condensate

Theorem (de Oliveira-Michelangeli, RMP '19)
Consider the solution

Ve = e MW (V/Niw)Q @ W(/Nav)Q).

11)

Let r( = (1,1)-particle reduced density operator of W;. Then

1
e[ P — e o) 0 @ wl | < Coxp(Cll) | 2+ ]

for all t, Ny and N, where u; and v; solve (time-dep. Hartree sys.)

iOpue = —Aug + (Vo * [ue[*)ue + ca( Vaz * [ve|?) e,
iatVt = —AVt —+ (V2 * |Vt|2)vt —+ C]_(V]_2 * |Ut|2)Vt

with u;—g = u and v;—g = v where ¢; = limp, n,—00 Nj/(N1 + Np).



Two-component condensate

Remarks

» Similar results for fixed number of particles (i.e. not in Fock
space) can be found in Anapolitanos-Hott-Hundertmark, RMP
'17 and Michelangeli-Olgiati, Anal. Math. Phys. '17.

» For fixed number of particles, the corresponding
time-independent result (ground state energy per particle) can
be found in Michelangeli-Nam-Olgiati RMP '18.

» Qur proofs are based on the methods developed in
Rodnianski-Schlein CMP '09.



Outline of the proof

In the one-component case.

The two-component case is similar.



Creation and annihilation operators on Fock space

f € L2(R3) and % in Fock space:
(@ (F)Y)n(x1y .-y %n)
1 n

= 7 Z f(Xj)"Lﬂn_l(Xl, ey Xj—1, Xj41, - - - ,Xn),
njzl

() x0) = VA + L [ dy O maa (v, ).

Commutation relations

[a(f), a*(8)] = (f. &), [a(f),a(g)] = [a"(f),a"(g)] = O.



Operator-valued distributions

ay, at, x € R3:

X1

a*(f):/dx f(x)a:  and

Commutation relations

[ax, ay] = 0(x — y) and

a(f) :/dex)aX.

[ax,ay] = [a

* %
x1 dy

=



Operators on Fock space

N = /dx ay ay,

1
H = /dx VxayVyax + SN / dxdy V(x — y)aia;ayax,

W(f) = exp(a’(f) — a(f)),



Conjugation formulas

Wey! operator W(f):

W*(flaxW(f) = a; + f(x), W*(f)axyW(f) = ax + f(x),



Fluctuation dynamics

Integral kernel of rﬁ” — |pe) (el

W, ala, VU,
r(l\},)t(xvy) —oe(y)pe(x) = W — ot(y)pe(x).

We want to approximate
W, = e MEW(VN)Q ~ W(V N Q.

Define
Un(t) = W*(VNpp)e W (VNy).

We find the estimate

“Uﬂ—WMwwé (Un(t), N Un(1)Q).

S



Controlling the number of fluctuations

We are left to prove that (N); = (Un(t)Q2, N Upn(1)Q2) < C where
i0:Un(t) = Ln(t)Un(t).
Explicitly (using shorthands)
Ln(t) = (I0: W )We + WEHW,.

To use Gronwall’s Lemma, we compute

&N = (HLn(D). N (notation (-).)



Cancellation
> We have
(i0: W)W, = —V/N[a*(idrr) + a(- - - )] + irrelevant

» For W;HW; we use the conjugation formulas and expand.
We get terms:

linear in a, a* formally O(N'/?).

quadratic O(1).
cubic O(N~1/2).
quartic O(N—1).

» There is complete cancellation of linear terms in W;"H W,
with (i(?tWt*)Wt:

linear in WSHW,;
= VN[ = Dpi + (V *[oe*)pe] + VNa(---).



Gronwall

> We are able to prove

([iLn(t), Nt < CN + 1.

» Hence J
E<N>t < CN + 1)

» Using Gronwall’s Lemma, we obtain

(N): < Cexp(Clt]).



Thank you for your attention!



